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Temperature dependence of universal fluctuations in the two-dimensional harmonic XY model
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We compute exact analytical expressions for the skewness and kurtosis in the two-dimensional harmonic XY
model. These quantities correspond to the third and fourth normalized moments of the probability density
function (PDF) of the magnetization of the model. From their behavior, we conclude that they depend explic-
itly on the system temperature even in the thermodynamic limit, and hence the PDF itself must depend on it.
Our results correct the hypothesis called universal fluctuations, they confirm and extend previous results which
showed a T dependence of the PDF, including perturbative expansions within the XY model up to first order in

temperature.
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I. INTRODUCTION

As was originally proposed in [1] “universal fluctuations”
should link very dissimilar systems, such as a confined tur-
bulent flow and a magnetic model, at a critical point. The
proposed universality was based on the probability density
functions (PDFs) for the two following global quantities: The
power consumption in the turbulent experiment and the mag-
netization in the critical system. These distributions, conve-
niently normalized, fell onto a common “universal” curve,
which was argued to be independent of the Reynolds number
and of the system size respectively. This led the authors to
suggest that the universality observed in the turbulence ex-
periment of [2] can be explained in terms of a self-similar
structure of fluctuations, just as in a finite critical system.
They also conjectured that this analogy should provide an
important new experimental application of finite-size scaling
approaches to a critical point. An extension of the observed
phenomenon, which was called universal fluctuations, was
made in [3] by including a wide class of quite different equi-
librium and nonequilibrium systems, such as a coupled rotor
model, the Ising and percolation models, models of forest
fires, and sand piles among others. In all of these systems,
the PDF of the corresponding global quantity when normal-
ized to its first two moments was suggested to be of the same
functional: The one corresponding to the PDF of the magne-
tization for the two-dimensional (2D) XY model in the low-
temperature phase. The authors proposed that this “general-
ized universality” should be a consequence of systems
sharing the properties of finite size, strong correlations, and
self-similarity. This suggestion went far beyond the known
picture of universality classes in the precise context of Wil-
son’s renormalization group, which depends on the dimen-
sion of the system and the symmetry properties of the order
parameter.

In Ref. [4] the PDF of the 2D XY model, in the presence
of an small magnetic field, was computed by a self-
consistent Hartree approximation. This small magnetic field
introduces a finite but large correlation length. The authors
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find that the PDFs are described to an excellent approxima-
tion by a family of Gumbel distributions with exponents a,
which depend on the magnetic field, and hence contain sys-
tem information. Nevertheless, they state—based on earlier
works [5]—that in the zero-field limit—or infinite correlation
length—the PDF becomes a “universal function,” indepen-
dent not only of system size but also the temperature and,
therefore, the critical exponent 7 throughout the low-
temperature regime. This belief led them to compute the PDF
starting with their Eq. (12), which was previously developed
in the zero-magnetic field case, just by inserting the modified
Green’s function given by their Eq. (5) into Eq. (12). Never-
theless, this key expression for the PDF is not exact, it cor-
responds only to the one-loop approximation of the exact
expression obtain in [17] [see Eq. (2)]. Moreover, in the
same reference next to leading order corrections to the PDF
are computed and it is shown that they explicity depend on
the system temperature. Therefore, the one-loop approxima-
tion which is used in [4] to compute contributions to the PDF
due to a small magnetic field is not trustworthy. It neglects
temperature dependent corrections (see discussion below).
The claim of universal fluctuations was not free of contro-
versy since, in the comment [6], a dependence of the PDF on
the universality classes was shown, using numerical data for
the Ising model in two and three dimensions and for different
values of the system size and temperature. Also, in [7], it was
pointed out that the standard scaling form is a sufficient con-
dition for the observed data collapse. The observations that
the PDF for turbulent power fluctuations in closed flows is
the same as for the harmonic 2D XY model is explained in
these terms; nevertheless, they found significant deviations
in the PDFs between the above-mentioned models when the
whole 2D XY model is considered. The finite-size scaling of
the roughness of signals in systems displaying Gaussian 1/f
power spectra was studied in [8]. The authors found that one
of the extreme value distributions (such as the Gumbel dis-
tribution proposed as the universal PDF curve) emerges as
the scaling function when boundary conditions are periodic.
For the case of nonperiodic boundary conditions, there are
small deviations that are mainly concentrated around the
maximum of the function. Although the existence of the uni-
versal BHP PDF for quite different systems was originally
inferred due to the properties of finite size, strong correla-
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tions, and self-similarity that these systems shared, in the
comment [9], the authors showed that the universal BHP
curve can result from strong correlated data, but it need not.
In this sense, the BHP curve would not be a result of some
underlying critical behavior of the involved systems. The
functional form used to express the universal PDF was a
Gumbel distribution with exponent a= /2 [3]. Neverthe-
less, in [10], it is shown that for a realistic range of data from
different systems, the various extremal distributions when
normalized to the first two moments are difficult to distin-
guish and, moreover, that a particular numerical value of a
€ [1,2] could simply arise due to a slow convergence to the
Gumbel asymptote. In [11], numerical evidence for a weak
but systematic temperature dependence of the PDF for the
2D XY model throughout the low-temperature region was
initially reported. This was made by performing an accurate
Monte Carlo study of the finite 2D XY model. This result
contradicted some of the above-mentioned articles support-
ing the claim of universal fluctuations, and maybe because of
the lack of an explicit analytical proof of the dependence of
the PDF on the temperature for this model, this result re-
mained only indirectly cited [12]. Using a stochastic cascade
model of turbulence—the KO62 model—the experimentally
observed non-Gaussian power fluctuations in closed turbu-
lence was studied in [13]. The authors concluded that the
asymmetric distribution found for this model strongly re-
sembled the experimental data. Nevertheless, a very small
dependence of the tails of the distributions on the Reynolds
number is observed (see Fig. 2) for Reynolds numbers vary-
ing from 10* to 107. They finally argued that there was no
evidence that a Gaussian distribution comes out in the limit
of infinite Reynolds numbers, but given the uncertainty in
the experimental results and the crudeness of the model, the
qualitative agreement seemed extremely encouraging. Re-
cently, and starting from the scaling ansatz, which is a basic
assumption of the turbulence model, Chapman et al. [14]
obtained analytically the functional form of the Gumbel PDF
for such systems and found the dependence of the exponent
a on system properties such as the Reynolds number in tur-
bulence models. Furthermore, the authors pointed out, that
the skewness and kurtosis are quantities sensitive to a. They
also consider as a particular case of interest the 2D XY model
in the spin-wave approximation, and starting from the previ-
ous analytical expression for the PDF of the magnetization as
the Fourier transform of a sum over its moments [15], they
obtained an explicit expression in the thermodynamical limit
for the exponent a, which is consistent with the reported
values of a: a= /2 of [3] and a=1.7428 of [5]. Neverthe-
less, the method used to derive the PDF is not sensitive
enough to predict a direct temperature dependence of the
PDF, which goes beyond the guessed Gumbel functional
form parametrized by an exponent a. The exact analytical
expression for the PDF for the low temperature regime of the
2D XY model can be found in [17] Eq. (2). More recently
and by exhibiting a graph contributing to o, the second mo-
ment of the PDF, which is not surpressed by a volume factor
N and depends on the temperature 7, [16], Banks and Bram-
well showed that not all multiloop graphs are surpressed by
factors 1/N and therefore may not be neglected in the ther-
modynamic limit, contrary to previous assumptions [5]. Us-
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ing a Monte Carlo simulation, they computed the skewness s
or normalized third moment of the PDF, as it “provides a
clear measure of the variation of the PFD with temperature,”
and using a least-squares fit of the numerical data obtained,
they found a numerically approximated expression for s,
which they called y5(T), valid for a square lattice of lattice
size L=16,

s(T) = —0.85+0.126T — 0.004877.

They also obtained for the lattice size L=32 “a value much
closer to the theory” with s(7)=~-0.88+0.157, and finally
argued that the skewness is relatively computational expen-
sive due to the need for averaging and, as their results appear
to confirm the evolution of s with 7, they “...leave the de-
termination of the precise form of s(7) from larger systems
to another time.” Unfortunately, they do not only report nu-
merical results for the skewness with numerical errors com-
pared with the exact analytical results reported in this paper
(in fact, we will find that the coefficient of T in the value of
s(T) for the lattice size L=16 is off by 7%), but its true value
[see Eq. (2.7) below] decreases with the system size to an
asymptotic value, contrary to their numerical results. Be-
cause of these numerical errors, it is legitimate to question
the accuracy of their results and conclusions.

Recently, in [17], an analytical expression for the PDF for
the full 2D XY model was computed systematically by
means of the loop expansion, and the validity of the gener-
alized universality was linked to renormalization group prop-
erties. The 2-loop analytical expression for the PDF shows
an explicit temperature dependence. As a consequence, its
skewness and kurtosis computed perturbatively up to 2-loops
(first order in T) also show an explicit temperature depen-
dence.

The aim of this paper is to deduce exact analytical expres-
sions for the skewness and kurtosis of the PDF for the har-
monic approximation of the XY model, defined on a square
lattice of lattice size L provided with periodic boundary con-
ditions, valid for each lattice size L and system temperature
T, and from their behavior confirm that the so-called univer-
sal fluctuations depend on the system temperature. With the
analytical expressions for the skewness and kurtosis, we ana-
lyze the numerical expressions and conclusions of [16] and
compare them with the corresponding perturbative expres-
sions deduced in [17] in the low-temperature region where
they should be valid.

II. COMPUTATION OF THE SKEWNESS AND KURTOSIS

In this section, we deduce a general expression for the
higher moments (M?) of the PDF, valid for an arbitrary sys-
tem size and to all orders in 7, the system temperature. The
model we are considering is the 2D XY model of planar spins
¢, on a periodic 2D square lattice A of lattice size L, x
€ A, with nearest-neighbor cosine interactions. According to
RG arguments, in the low-temperature phase and sufficiently
below the Berezinskii-Kosterlitz-Thouless critical tempera-
ture the physics of this model is entirely described by its
harmonic approximation, the 2D harmonic XY model—or
Gaussian model in the language of high-energy physicists. In
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the present paper, exact expressions for the Gaussian model
with periodic boundary conditions for arbitrary temperature
and system size are obtained. Hasenbush pointed out [18]
that in spite of the fact that there are no vortex contributions
below the transition temperature a better approximation to
the full XY model is obtained by taking into account the
periodicity of the XY model for the boundary conditions.
This leads to the contributions coming from the winding con-
figurations. But they turn out to be numerically small [18]
and therefore one expects that the Gaussian model with pe-
riodic boundary conditions provides a reasonable numerical
approximation of the large-L limit of the XY model in the
low-T phase. Its Hamiltonian, up to a constant, is

H(g) = 5K~ B,

where A is the lattice Laplace operator, J is the ferromag-
netic constant, and (¢, @)= ¢(x) @(x) stands for the scalar
product on the lattice. We use a system of units with Boltz-
mann’s constant equal to unity throughout, and identify T
with the reduced temperature 7/J. Although this model has
no phase transition, it is a critical model in the sense that it
has an infinite correlation length. Because this is the Hamil-
tonian of the Gaussian model, we use the known expression
for the generating function of the Gaussian measure du ()
with covariance C and mean zero [19]:

f dprc(@)expli{ep.f)) = eXp<— %(ﬁ TGﬂ>,

where the covariance in our case corresponds to C=7G. G
denotes the lattice propagator given below by Eq. (2.6). Ex-
panding both sides of the above equation, one obtains a
closed expression for the moments (M?) as a trace over lat-
tice points x; € A and values a;=+1:

(M) |” 1
(MP) = {E} {X’Ea} {11;[] exp(— EaiajTG(Xi - Xj)) }
(2.1)

Starting from this equation and using the translational in-
variance of the lattice propagator G, the exact expression for
the moments to all orders in T can be obtained, yielding

(M) =exp[- TG(0)/2], (2.2)
(M?) = ME cosh[TG(x)], (2.3)
xXeA
oMy
M) =" > (exp[- TG(x)Jcosh{T[G(y) + G(x —y) T}
X,yeA
+exp[TG(x) Jcosh{T{G(y) - G(x - y)1}), (2.4)
RC/ON
(M*) = N > (exp{- TIG(x) + G(z - y)Trcosh{T[G(y)

X,y,zeA
+G(z) + G(x—-y) + G(x—2z)]} + exp{T] G(x)
+G(z ~y)Jfcost{T[- G(y) + G(z) + G(x ~y)
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- G(x-2)]} +exp{T[- G(x)

+G(z - y)Jicosh{7[G(y)

- G(z) + G(x-y) - G(x - z)]} + exp{T[ G(x)
= G(z - y)Jicosh{T[G(y) + G(z) - G(x —y)
-G(x-2)])),

where A denotes the lattice, N=L? is the volume, and the
lattice propagator G is given for example by its Fourier rep-
resentation

(2.5)

exp(- iK - x)

G(X) = 2 (K )2
L

, (2.6)
N(KL)%&O

where K; is the lattice momentum defined as usual as
(K;);=2sin(K;/2), with i=1,2, and K; lies in the first Bril-
louin zone, K;=(27/L)n with ne 7 and —7<K;<r. The
sum runs over all possible values of K; for which (K,)? does
not vanish. This technical point follows from the invariance
of the original Hamiltonian under a global rotation of the
spin variables. We now use the definitions of the skewness
and kurtosis as the third and fourth normalized moments
s(D=([(M~(M))/ o) and c(T)=([(M~(M))/c]*), respec-
tively, and write

s(T) = W[<M3> = 3(MP)M) + 2(M)*],
2.7)
1
c(T) = W[(M4> — HMPKM)
+ 6(M>}M)* - 3(M)*]. (2.8)

Approximated analytical expressions can be obtained by ex-
panding each term in powers of 7, obtaining up to first order

inT

32 2

S(T)=—g3<£) {1—3@“0@2)}, (2.9)
82 4 g;

4i42 88, O(Tz)}, (2.10)
(g2) 82

where the quantities g, are defined in terms of the power n of
the lattice propagator G as g,=G"(0)/N""". The lattice coef-
ficients, g, for n=2, depend weakly on the volume N in the
thermodynamic limit. From the above equations, we observe
that the linear coefficients—which we call slopes—
appearing in the temperature expansions of the skewness and
kurtosis are expressed in terms of the g, with n=2. These
coefficients have a nontrivial thermodynamic limit. Numeri-
cally, we found that in the large-L limit they do not vanish
and get the values 0.1319 and —0.470, respectively. This fact
shows clearly that the first high-order moments of the PDF
depend on the system temperature even in the thermody-
namic limit, and hence the PDF itself depends explicity on it.
Here, I want to point out that Egs. (2.9) and (2.10) can be
obtained directly from [17] as follows: in Egs. (31) and (34)

c(T):3{1 +
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of [17], the skewness and kurtosis were computed up to
2-loops (or equivalently up to first order in 7) including an-
harmonic corrections. But according to their conclusions,
these corrections merely contribute to a renormalization of
temperature, up to order N-!, T— T(1+\T+---). Due to the
fact that the harmonic corrections do not include terms su-
pressed by factors 1/N, we conclude that up to first order in
the temperature, Egs. (2.9) and (2.10) can be obtained from
Egs. (31) and (34) of Ref. [17] by neglecting the 1/N terms.
These contributions are negligible in the thermodynamic
limit but are relevant for finite lattice sizes, as we will show
numerically in the next section. Higher-order corrections in 7
can be directly computed along the lines outlined here.

III. NUMERICAL RESULTS

In order to compare with values reported in [16], we
evaluate numerically Egs. (2.9) and (2.10) by using MATLAB
for different lattice sizes including L=16 and L=32. We ob-
tain for the skewness and kurtosis the approximate expres-
sions  s(7)=-0.8540+0.13587, ¢(T)=~4.3283-0.4639T
for L=16, and s(7T)=-0.8763+0.13317, ¢(T)=~=4.3820
—0.4666T for L=32 respectively. Independent of the numeri-
cal differences found for the first two coefficients of the
skewness, one observes that the values for the slope (linear
term in 7), which we will denote by m(L), reported in [16]
increase with the system size, [they report the values
m(16)=0.126 and m(32)=0.15 for the slope, in contrast with
ours m(16)=0.1358 and m(32)=0.1331], contrary to the
scale behavior of the coefficients appearing in Eq. (2.9).
Moreover, we observe that the difference between the values
obtained for the slope in [16] and in this paper grows with
the system size from 7% to 11% for the lattice sizes L=16
and 32. From its analytical expression given in (2.9), it turns
out that the slope is a decreasing function of the system size
and its thermodynamic limit converges to the value 0.1319.
From the expression for the kurtosis given by Eq. (2.10), we
can obtain also the large-L limit value of the slope which
gives —0.470. Finally, and in order to compare our results
with the accurate but perturbative values obtained in [17] for
the skewness and kurtosis, we evaluate numerically the con-
tributions obtained from the anharmonic corrections, which
are, according to the discussion of the last paragraph of the
previous section, the 1/N-terms:

3 2 3/2 2
5s<T>=—g3(—) (ﬁ—@ T,  (3.1)
2N""\ g, 28, &3
5¢(T) 1(2 + g2 g%g“) 2, (3.2)
=—|2g183+83 -7 - :
N\ T2 e [ (gy)?

One obtains &s(7) =0.0197T, Sc(T)=-0.0404T for L
=16 and &s5(T)=0.0191T, Sc(T)=-0.0423T for L=32, re-
spectively. Perfect agreement is found with the correspond-
ing values of [17] [see Egs.(36) and (38)], when adding these
corrections to the values obtained in Egs. (2.9) and (2.10) for
s(T) and c(T), respectively.

This remarkable agreement represents an indirect test of
the RG-argument given in [17], that the effect of the correc-
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FIG. 1. The skewness is plotted as a function of 7/J in the range
[0,15], for a lattice of lattice size L=16. The dotted-dashed line
corresponds to its linear approximation given by Eq. (2.9), the dot-
ted line represents the exact expression given by Eq. (2.7), and the
full line corresponds to the quadratic fit of Monte Carlo data found
in [11] [see Eq. (20)].

tions to the spin-wave approximation (anharmonic correc-
tions) on the PDF is merely a renormalization of tempera-
ture, up to order 1/N.

To show the temperature dependence of these quantities
we plot in Figs. 1 and 2 the skewness and kurtosis for a
square lattice of lattice size L=16 in the temperature range
[0,15]. In the range of small values of temperature T
€[0,1], the skewness and kurtosis show a linear dependence
in agreement with their linearized expressions given by Eqs.
(2.9) and (2.10). For larger values of T, the skewness grows
slightly faster than the quadratic fit of Monte Carlo data
found in [16] [see Eq. (20)]. The difference between both
curves is a monotonically growing function of the tempera-

4.5

KURTOSIS
@
o

w
T

251

10 15
TEMPERATURE

FIG. 2. The kurtosis as a function of the reduced temperature
T/J for a lattice of lattice size L=16. The full line corresponds to its
linear approximation given by Eq. (2.10), and the dotted line rep-
resents the exact expression given by Eq. (2.8).
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ture. For large values of 7, the kurtosis displays a weak
convexity and appears to reveal oscillations toward the value
c=3.

IV. CONCLUSIONS

From the low-temperature expansion for the skewness
and kurtosis given by Egs. (2.9) and (2.10), we observe that
the linear coefficients—which we call slopes—have non-
trivial thermodynamical limits. Numerically, we found that
in the large-L limit they do not vanish and get the values
0.1319 and —0.470, respectively. This fact shows clearly that
the first high-order moments of the PDF depend on the sys-
tem temperature even in the thermodynamic limit and,
hence, the PDF itself depends explicity on it, contrarily to
the claim of universal fluctuations found in the literature
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throughout many years since its original proposal [1]. This
conclusion agrees with previous numerical results [11] and
with the main result of [17].

The exact expressions found for both quantities, the skew-
ness and kurtosis, and their numerical evaluations plotted in
Figs. 1 and 2, agree perfectly in the low-temperature region
with the 2-loop approximated analytical expressions reported
in [17] when the anharmonic corrections are taken into ac-
count, where these expansions for them should apply.
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